
1

Memory Management

2

Memory Management

 Is the task carried out by the OS and

hardware to accommodate multiple

processes in main memory

 If only a few processes can be kept in main

memory, then much of the time all

processes will be waiting for I/O and the

CPU will be idle

 Hence, memory needs to be allocated

efficiently in order to pack as many

processes into memory as possible

3

Memory Management

 In most schemes, the kernel occupies

some fixed portion of main memory and

the rest is shared by multiple processes

4

Memory Management Requirements

 Relocation

programmer cannot know where the program

will be placed in memory when it is executed

a process may be (often) relocated in main

memory due to swapping

swapping enables the OS to have a larger pool

of ready-to-execute processes

memory references in code (for both

instructions and data) must be translated to

actual physical memory address

5

Memory Management Requirements

 Protection

processes should not be able to reference

memory locations in another process without

permission

 impossible to check addresses at compile time

in programs since the program could be

relocated

address references must be checked at run

time by hardware

6

Memory Management Requirements

 Sharing

must allow several processes to access a

common portion of main memory without

compromising protection

cooperating processes may need to share

access to the same data structure

better to allow each process to access the same

copy of the program rather than have their own

separate copy

7

Memory Management Requirements

 Logical Organization

users write programs in modules with different

characteristics

 instruction modules are execute-only

data modules are either read-only or read/write

some modules are private others are public

To effectively deal with user programs, the OS

and hardware should support a basic form of

module to provide the required protection and

sharing

8

Memory Management Requirements

 Physical Organization

secondary memory is the long term store for

programs and data while main memory holds

program and data currently in use

moving information between these two levels of

memory is a major concern of memory

management (OS)

 it is highly inefficient to leave this responsibility

to the application programmer

9

Simple Memory Management

 In this chapter we study the simpler case where

there is no virtual memory

 An executing process must be loaded entirely in

main memory (if overlays are not used)

 Although the following simple memory

management techniques are not used in modern

OS, they lay the ground for a proper discussion of

virtual memory (next chapter)

 fixed partitioning

 dynamic partitioning

 simple paging

 simple segmentation

10

Fixed Partitioning

 Partition main memory

into a set of non

overlapping regions

called partitions

 Partitions can be of

equal or unequal sizes

11

Fixed Partitioning

 any process whose size is less than or equal to a

partition size can be loaded into the partition

 if all partitions are occupied, the operating system

can swap a process out of a partition

 a program may be too large to fit in a partition.

The programmer must then design the program

with overlays

when the module needed is not present the user

program must load that module into the program’s

partition, overlaying whatever program or data are

there

12

Fixed Partitioning

 Main memory use is inefficient. Any

program, no matter how small, occupies an

entire partition. This is called internal

fragmentation.

 Unequal-size partitions lessens these

problems but they still remain...

 Equal-size partitions was used in early

IBM’s OS/MFT (Multiprogramming with a

Fixed number of Tasks)

13

Placement Algorithm with Partitions

 Equal-size partitions

 If there is an available partition, a process can

be loaded into that partition

because all partitions are of equal size, it does

not matter which partition is used

 If all partitions are occupied by blocked

processes, choose one process to swap out to

make room for the new process

14

Placement Algorithm with Partitions

 Unequal-size

partitions: use of

multiple queues

 assign each process to

the smallest partition

within which it will fit

 A queue for each

partition size

 tries to minimize

internal fragmentation

 Problem: some queues

will be empty if no

processes within a size

range is present

15

Placement Algorithm with Partitions

 Unequal-size

partitions: use of a

single queue

 When its time to load a

process into main

memory the smallest

available partition that

will hold the process is

selected

 increases the level of

multiprogramming at the

expense of internal

fragmentation

16

Dynamic Partitioning

 Partitions are of variable length and number

 Each process is allocated exactly as much

memory as it requires

 Eventually holes are formed in main

memory. This is called external

fragmentation

 Must use compaction to shift processes so

they are contiguous and all free memory is

in one block

 Used in IBM’s OS/MVT (Multiprogramming

with a Variable number of Tasks)

17

Dynamic Partitioning: an example

 A hole of 64K is left after loading 3 processes: not

enough room for another process

 Eventually each process is blocked. The OS

swaps out process 2 to bring in process 4

18

Dynamic Partitioning: an example

 another hole of 96K is created

 Eventually each process is blocked. The OS

swaps out process 1 to bring in again process 2

and another hole of 96K is created...

 Compaction would produce a single hole of 256K

19

Placement Algorithm

 Used to decide

which free block to

allocate to a process

 Goal: to reduce

usage of compaction

(time consuming)

 Possible algorithms:

 Best-fit: choose

smallest hole

 First-fit: choose first

hole from beginning

 Next-fit: choose first

hole from last

placement

20

Placement Algorithm: comments

 Next-fit often leads to allocation of the

largest block at the end of memory

 First-fit favors allocation near the

beginning: tends to create less

fragmentation then Next-fit

 Best-fit searches for smallest block: the

fragment left behind is small as possible

main memory quickly forms holes too small to

hold any process: compaction generally needs

to be done more often

21

Replacement Algorithm

 When all processes in main memory are

blocked, the OS must choose which

process to replace

A process must be swapped out (to a Blocked-

Suspend state) and be replaced by a new

process or a process from the Ready-Suspend

queue

We will discuss later such algorithms for

memory management schemes using virtual

memory

22

Buddy System

 A reasonable compromize to overcome

disadvantages of both fixed and variable

partitionning schemes

 A modified form is used in Unix SVR4 for

kernal memory allocation

 Memory blocks are available in size of

2^{K} where L <= K <= U and where

2^{L} = smallest size of block allocatable

2^{U} = largest size of block allocatable

(generally, the entire memory available)

23

Buddy System

 We start with the entire block of size 2^{U}

 When a request of size S is made:

 If 2^{U-1} < S <= 2^{U} then allocate the entire

block of size 2^{U}

 Else, split this block into two buddies, each of size

2^{U-1}

 If 2^{U-2} < S <= 2^{U-1} then allocate one of the

2 buddies

Otherwise one of the 2 buddies is split again

 This process is repeated until the smallest block

greater or equal to S is generated

 Two buddies are coalesced whenever both of

them become unallocated

24

Buddy System

 The OS maintains several lists of holes

 the i-list is the list of holes of size 2^{i}

whenever a pair of buddies in the i-list occur,

they are removed from that list and coalesced

into a single hole in the (i+1)-list

 Presented with a request for an allocation

of size k such that 2^{i-1} < k <= 2^{i}:

 the i-list is first examined

 if the i-list is empty, the (i+1)-list is then

examined...

25

Example of Buddy System

26

Buddy Systems: remarks

 On average, internal fragmentation is 25%

each memory block is at least 50% occupied

 Programs are not moved in memory

simplifies memory management

 Mostly efficient when the size M of memory

used by the Buddy System is a power of 2

M = 2^{U} “bytes” where U is an integer

 then the size of each block is a power of 2

 the smallest block is of size 1

Ex: if M = 10, then the smallest block would be

of size 5

27

Relocation

 Because of swapping and compaction, a

process may occupy different main

memory locations during its lifetime

 Hence physical memory references by a

process cannot be fixed

 This problem is solved by distinguishing

between logical address and physical

address

28

Address Types

 A physical address (absolute address) is a

physical location in main memory

 A logical address is a reference to a

memory location independent of the

physical structure/organization of memory

 Compilers produce code in which all

memory references are logical addresses

 A relative address is an example of logical

address in which the address is expressed

as a location relative to some known point

in the program (ex: the beginning)

29

Address Translation

 Relative address is the most frequent type

of logical address used in pgm modules

(ie: executable files)

 Such modules are loaded in main memory

with all memory references in relative form

 Physical addresses are calculated “on the

fly” as the instructions are executed

 For adequate performance, the translation

from relative to physical address must by

done by hardware

30

Simple example of hardware
translation of addresses

 When a process is assigned to the running state, a

base register (in CPU) gets loaded with the

starting physical address of the process

 A bound register gets loaded with the process’s

ending physical address

 When a relative addresses is encountered, it is

added with the content of the base register to

obtain the physical address which is compared

with the content of the bound register

 This provides hardware protection: each process

can only access memory within its process image

31

Example Hardware for Address Translation

32

Simple Paging

 Main memory is partition into equal fixed-

sized chunks (of relatively small size)

 Trick: each process is also divided into

chunks of the same size called pages

 The process pages can thus be assigned

to the available chunks in main memory

called frames (or page frames)

 Consequence: a process does not need to

occupy a contiguous portion of memory

33

Example of process loading

 Now suppose that process B is swapped out

34

Example of process loading (cont.)

 When process A and C

are blocked, the pager

loads a new process D

consisting of 5 pages

 Process D does not

occupied a contiguous

portion of memory

 There is no external

fragmentation

 Internal fragmentation

consist only of the last

page of each process

35

Page Tables

 The OS now needs to maintain (in main memory) a

page table for each process

 Each entry of a page table consist of the frame

number where the corresponding page is

physically located

 The page table is indexed by the page number to

obtain the frame number

 A free frame list, available for pages, is maintained

36

Logical address used in paging

 Within each program, each logical address

must consist of a page number and an

offset within the page

 A CPU register always holds the starting

physical address of the page table of the

currently running process

 Presented with the logical address (page

number, offset) the processor accesses the

page table to obtain the physical address

(frame number, offset)

37

Logical address in paging

 The logical address becomes

a relative address when the

page size is a power of 2

 Ex: if 16 bits addresses are

used and page size = 1K, we

need 10 bits for offset and

have 6 bits available for page

number

 Then the 16 bit address

obtained with the 10 least

significant bit as offset and 6

most significant bit as page

number is a location relative to

the beginning of the process

38

Logical address in paging

 By using a page size of a power of 2, the

pages are invisible to the programmer,

compiler/assembler, and the linker

 Address translation at run-time is then

easy to implement in hardware

 logical address (n,m) gets translated to

physical address (k,m) by indexing the page

table and appending the same offset m to the

frame number k

39

Logical-to-Physical Address
Translation in Paging

40

Simple Segmentation

 Each program is subdivided into blocks of

non-equal size called segments

 When a process gets loaded into main

memory, its different segments can be

located anywhere

 Each segment is fully packed with

instructs/data: no internal fragmentation

 There is external fragmentation; it is

reduced when using small segments

41

Simple Segmentation

 In contrast with paging, segmentation is

visible to the programmer

provided as a convenience to organize logically

programs (ex: data in one segment, code in

another segment)

must be aware of segment size limit

 The OS maintains a segment table for each

process. Each entry contains:

 the starting physical addresses of that

segment.

 the length of that segment (for protection)

42

Logical address used in segmentation

 When a process enters the Running state, a CPU

register gets loaded with the starting address of

the process’s segment table.

 Presented with a logical address (segment

number, offset) = (n,m), the CPU indexes (with n)

the segment table to obtain the starting physical

address k and the length l of that segment

 The physical address is obtained by adding m to k

(in contrast with paging)

 the hardware also compares the offset m with the length

l of that segment to determine if the address is valid

43

Logical-to-Physical Address
Translation in segmentation

44

Simple segmentation and paging
comparison

 Segmentation requires more complicated

hardware for address translation

 Segmentation suffers from external fragmentation

 Paging only yield a small internal fragmentation

 Segmentation is visible to the programmer

whereas paging is transparent

 Segmentation can be viewed as commodity

offered to the programmer to organize logically a

program into segments and using different kinds

of protection (ex: execute-only for code but read-

write for data)

 for this we need to use protection bits in segment

table entries

