Memory Management




Memory Management

= Is the task carried out by the OS and
nardware to accommodate multiple
processes in main memory

= If only a few processes can be kept in main
memory, then much of the time all
processes will be waiting for I/O and the
CPU will be idle

= Hence, memory needs to be allocated
efficiently in order to pack as many
processes into memory as possible




Memory Management

= In most schemes, the kernel occupies
some fixed portion of main memory and
the rest is shared by multiple processes



Memory Management Requirements

= Relocation

¢ programmer cannot know where the program
will be placed in memory when it is executed

¢ a process may be (often) relocated in main
memory due to swapping

¢ swapping enables the OS to have a larger pool
of ready-to-execute processes

¢ memory references in code (for both
Instructions and data) must be translated to
actual physical memory address



Memory Management Requirements

= Protection

¢ processes should not be able to reference
memory locations in another process without
permission

¢ impossible to check addresses at compile time
In programs since the program could be
relocated

& address references must be checked at run
time by hardware



Memory Management Requirements

=« Sharing

¢ must allow several processes to access a
common portion of main memory without
compromising protection

+ cooperating processes may need to share
access to the same data structure

- better to allow each process to access the same
copy of the program rather than have their own
separate copy



Memory Management Requirements

« Logical Organization
¢ users write programs in modules with different
characteristics
- Instruction modules are execute-only
- data modules are either read-only or read/write
- some modules are private others are public
¢ To effectively deal with user programs, the OS
and hardware should support a basic form of

module to provide the required protection and
sharing



Memory Management Requirements

« Physical Organization

¢ secondary memory is the long term store for
programs and data while main memory holds
program and data currently in use

¢ moving information between these two levels of
memory IS a major concern of memory
management (OS)
=1t is highly inefficient to leave this responsibility
to the application programmer



Simple Memory Management

= In this chapter we study the simpler case where
there is no virtual memory

= An executing process must be loaded entirely in
main memory (if overlays are not used)

= Although the following simple memory
management techniques are not used in modern
OS, they lay the ground for a proper discussion of
virtual memory (next chapter)

¢ fixed partitioning

¢ dynamic partitioning
¢ simple paging

¢ simple segmentation



Fixed Partitioning

Partition main memory
Into a set of non
overlapping regions
called

Partitions can be of
equal or unequal sizes

Operating System
8M

Equal-size partitions

Operating System
8§M

2M

4 M

6 M

Unequal-size partitions



Fixed Partitioning

= any process whose size is less than or equal to a
partition size can be loaded into the partition

« If all partitions are occupied, the operating system
can swap a process out of a partition

= aprogram may be too large to fit in a partition.
The programmer must then design the program
with overlays

¢ when the module needed is not present the user
program must load that module into the program’s
partition, overlaying whatever program or data are
there

11



12

Fixed Partitioning

= Main memory use is inefficient. Any
program, no matter how small, occupies an
entire partition. This is called internal
fragmentation.

« Unequal-size partitions lessens these
problems but they still remain...

=« Equal-size partitions was used In early
IBM’s OS/MFT (Multiprogramming with a
Fixed number of Tasks)



Placement Algorithm with Partitions

« Equal-size partitions
¢ If there Is an available partition, a process can
be loaded into that partition

+ because all partitions are of equal size, it does
not matter which partition is used

¢ If all partitions are occupied by blocked
processes, choose one process to swap out to
make room for the new process

13



Placement Algorithm with Partitions

Unequal-size
partitions: use of
multiple queues

¢ assign each process to
the smallest partition
within which it will fit

¢ A gueue for each
partition size

¢ tries to minimize
Internal fragmentation

¢ Problem: some queues
will be empty if no
processes within a size
range is present

New
Processes

Operating
System

ENEEEEE Bay




Placement Algorithm with Partitions

Unequal-size
partitions: use of a
single queue
¢ When its time to load a
process into main
memory the smallest
available partition that
will hold the process is
selected
¢ increases the level of
multiprogramming at the
expense of internal
fragmentation

New o —TTTTTn

Processes

Operating
System




16

Dynamic Partitioning

Partitions are of variable length and number

Each process is allocated exactly as much
memory as It requires

Eventually holes are formed in main
memory. This Is called external
fragmentation

Must use compaction to shift processes so
they are contiguous and all free memory is
In one block

Used in IBM’s OS/MVT (Multiprogramming
with a Variable number of Tasks)



Dynamic Partitioning: an example

Operating
System

(a)

iJEEK

kEQﬁK

Operating
System

Process 1

(b)

320K

sToK

Operating
System

Process 1

Process 2

(c)

320K

224K

352K

Operating
System

Process 1

Process 2

Process 3

(d)

A20K

224K

285K

(S21.4

A hole of 64K is left after loading 3 processes: not
enough room for another process

Eventually each process is blocked. The OS
swaps out process 2 to bring in process 4



Dynamic Partitioning: an example

Operating
System

Process 1

Process 3

(e)

320K

224K

288K

A51.4

Operating
System

Process 1

Process 4

Process 3

(f)

320K

128K
D6eK

288K

S51 .4

Operating
System

Process 4

Process 3

(g)

another hole of 96K is created
Eventually each process is blocked. The OS

swaps out process 1to bring in again process 2

F0K

128K
96K

288K

S51.4

and another hole of 96K Is created...
Compaction would produce a single hole of 256K

Operating
System

Process 2

Process 4

Process 3

(h)

224K

ek

128K
96K

288K

5514



Placement Algorithm

Used to decide
which free block to
allocate to a process

Goal: to reduce
usage of compaction
(time consuming)

Possible algorithms:

& : choose
smallest hole

* . choose first
hole from beginning

O : choose first
hole from last
placement

8K

12K

22K

Last
allocated

18K

block (14K)

SK

6K

14K

36K

(a) Before

8K

First Fit 12K
oK
Best Fit

2K

6K

I:' Allocated block

14K

— [

20K

(b) After

Example Memory Configuration Before
and After Allocation of 16 Kbyte Block



Placement Algorithm: comments

= Next-fit often leads to allocation of the
argest block at the end of memory

« First-fit favors allocation near the
peginning: tends to create less
fragmentation then Next-fit

= Best-fit searches for smallest block: the
fragment left behind is small as possible
¢ main memory quickly forms holes too small to

hold any process: compaction generally needs
to be done more often

20



21

Replacement Algorithm

= When all processes in main memory are
blocked, the OS must choose which
process to replace

¢ A process must be swapped out (to a Blocked-
Suspend state) and be replaced by a new
process or a process from the Ready-Suspend
gueue

¢ \We will discuss later such algorithms for
memory management schemes using virtual
memory



Buddy System

= A reasonable compromize to overcome
disadvantages of both fixed and variable
partitionning schemes

« A modified form is used in Unix SVR4 for
kernal memory allocation

= Memory blocks are available in size of
2K} where L <= K <= U and where
¢ 2NL} = smallest size of block allocatable

¢ 2MU} = largest size of block allocatable
(generally, the entire memory available)

22



23

Buddy System

We start with the entire block of size 2*{U}
When a request of size S is made:

¢ If 2MU-1} < S <= 2U} then allocate the entire
block of size 2™U}

¢ Else, split this block into two buddies, each of size
2MU-1}

¢ If 2MU-2} < S <= 2U-1} then allocate one of the
2 buddies

¢ Otherwise one of the 2 buddies is split again

This process is repeated until the smallest block
greater or equal to S is generated

Two buddies are coalesced whenever both of
them become unallocated



Buddy System

= The OS maintains several lists of holes
¢ the I-list Is the list of holes of size 2/{i}

¢ whenever a pair of buddies in the I-list occuir,
they are removed from that list and coalesced
Into a single hole in the (i+1)-list
« Presented with arequest for an allocation
of size k such that 2*{i-1} < k <= 2/*{i}.
¢ the I-list is first examined
¢ if the I-list Is empty, the (i+1)-list is then
examined...

24



Example of Buddy System

1 Mbyte block
Request 100 K
Request 240 K
Request 64 K
Request 256 K
Release B
Release A
Request 75 K
Release C
Release E

Release D

1M
A=128K| 128K 256 K 512K
A=128K| 128K B=256K 512K
A=128K [c=61K|64 K B=256K 512K
A=128 K [c=64k[64 K B=256K D =256 K 256 K
A=128 K [c=64k[64 K 256 K D =256 K 256 K
128K [c=64K|64 K 256 K D =256 K 256 K
E=128K [c=64K64 K 256 K D =256 K 256 K
E=128 K| 128K 256 K D =256 K 256 K
512K D =256 K 256 K
1M




Buddy Systems: remarks

« On average, internal fragmentation is 25%
¢ each memory block is at least 50% occupied

= Programs are not moved in memory
¢ simplifies memory management

« Mostly efficient when the size M of memory
used by the Buddy System is a power of 2
& M = 2MU} “bytes” where U is an integer
¢ then the size of each block is a power of 2
¢ the smallest block is of size 1

¢ EXx:If M =10, then the smallest block would be

of size 5
26



Relocation

= Because of swapping and compaction, a
process may occupy different main
memory locations during its lifetime

« Hence physical memory references by a
process cannot be fixed

= This problem is solved by distinguishing
between logical address and physical
address

27



28

Address Types

= A physical address (absolute address) is a
physical location in main memory

« Alogical address Is areferenceto a
memory location independent of the
physical structure/organization of memory

= Compilers produce code in which all
memory references are logical addresses

= Arelative address is an example of logical
address in which the address is expressed
as a location relative to some known point
In the program (ex: the beginning)



Address Translation

= Relative address is the most frequent type
of logical address used in pgm modules
(le: executable files)

= Such modules are loaded in main memory
with all memory references in relative form

« Physical addresses are calculated “on the
fly” as the instructions are executed

= For adequate performance, the translation
from relative to physical address must by
done by hardware

29



30

Simple example of hardware
translation of addresses

= When a process is assigned to the running state, a
base register (in CPU) gets loaded with the
starting physical address of the process

« A bound register gets loaded with the process’s
ending physical address

= When arelative addresses is encountered, it Is
added with the content of the base register to
obtain the physical address which is compared
with the content of the bound register

= This provides hardware protection: each process
can only access memory within its process image



Example Hardware for Address Translation

Relative address

Process Control Block

Base Register {———-——-——-——-——-—— -} ————————— ———

operating system

p Adder Program
i Absolute
Bounds Register ——— Comparator |- — — _glddress
| . |
I | |
I [ |
I r e ——— —
| hd Data
: Interrupt to
I
I

Stack

Process inmge in
main menmory



32

Simple Paging

« Main memory Is partition into equal fixed-
sized chunks (of relatively small size)

« Trick: each process is also divided into
chunks of the same size called pages

= The process pages can thus be assigned
to the available chunks in main memory
called frames (or page frames)

= Conseqguence: a process does not need to
occupy a contiguous portion of memory



Example of process loading

Frame

Main memory Main memory Main memory Main memory
number
0 0 A0 0 A0 0 A0
1 1 Al 1 A.l 1 Al
2 2 A2 2 A2 2 A2
3 3 A 3 AJd 3 AJd
4 4 4 B.O 4 B.O
5 5 5 B.1 5 B.1
6 6 6 B.2 6 B.2
7 7 7 7 C.0
8 8 3 8 C.1
9 9 9 9 C2
10 10 10 10 C.3
11 11 11 11
12 12 12 12
13 13 13 13
14 14 14 14
(a) Fifteen Available Pages ib) Load Process A (b) Load Process B id) Load Process C

Now suppose that process B Is swapped out



Example of process loading (cont.)

When process A and C
are blocked, the pager

Main memory Main memory

0 A0 0 A.D
loads a new processD 1 Al 1 Al
. . 2 A2 2 A2
consisting of 5 pages 3 e 3 o
Process D does not : .
occupied a contiguous 6 D22
portion of memory T . S
There is no external ) 1 ’ 2
. 10 | B, 10 | G|
fragmentation 11 11 D.3
. 12 12 D.4

Internal fragmentation i, 13

consist only of thelast 14

pag e Of eacC h p FroOcess (e) Swap out B (f) Load Process D



Page Tables

0, 0 0 — 0 0, 4 13
1 [l 1| — 18 1 14
2 2 2 2 Free f
3 .o Process B 3 10 3] 11 rﬂii;;ame
Process A page table Process C 4 12
page table page table Process D
page table

The OS now needs to maintain (in main memory) a
for each process

Each entry of a page table consist of the frame
number where the corresponding page is
physically located

The page table is indexed by the page number to
obtain the frame number

A free frame list, available for pages, is maintained



Logical address used in paging

= Within each program, each logical address
must consist of a page number and an
offset within the page

« A CPU register always holds the starting
physical address of the page table of the
currently running process

= Presented with the logical address (page
number, offset) the processor accesses the
page table to obtain the physical address
(frame number, offset)

36



Logical address =

Logical address in paging et 1. omer—47s

(000001/0111011110]|

The logical address becomes
a relative address when the
page size is a power of 2

Ex: if 16 bits addresses are
used and page size = 1K, we
need 10 bits for offset and
have 6 bits available for page
number

Then the 16 bit address
obtained with the 10 least *
significant bit as offset and 6
most significant bit as page
number iIs a location relative to

the beginning of the process \
(page size = 1K)

r

Page 0
A

Page 1
A s
478

Page 2
A

\--T--.J
Internal
fragmentation



Logical address in paging

« By using a page size of a power of 2, the
pages are invisible to the programmer,
compiler/assembler, and the linker

= Address translation at run-time is then
easy to implement in hardware
¢ logical address (n,m) gets translated to
physical address (k,m) by indexing the page
table and appending the same offset m to the
frame number k

38



Logical-to-Physical Address

Translation in Paging

4

16-bit logical address

6-bit #
it page #

10-bit offset

0/0|0]0

1

1/11/1/0/1/1]1]/1|0

0000101

Process

»1[000110
2|011001
page table

1/0/0/1/1]1/0|1

16-bit physical address




40

Simple Segmentation

« Each program is subdivided into blocks of
non-equal size called segments

= When a process gets loaded into main
memory, its different segments can be
located anywhere

= Each segment is fully packed with
Instructs/data: no internal fragmentation

= There is external fragmentation; it is
reduced when using small segments



Simple Segmentation

= In contrast with paging, segmentation is
visible to the programmer

¢ provided as a convenience to organize logically
programs (ex: data in one segment, code In
another segment)

¢ must be aware of segment size limit

= The OS maintains a segment table for each
process. Each entry contains:

¢ the starting physical addresses of that
segment.

¢ the length of that segment (for protection)

41



42

Logical address used in segmentation

« When a process enters the Running state, a CPU
register gets loaded with the starting address of
the process’s segment table.

= Presented with a logical address (segment
number, offset) = (n,m), the CPU indexes (with n)
the segment table to obtain the starting physical
address k and the length | of that segment

« The physical address is obtained by adding m to k

(in contrast with paging)

¢ the hardware also compares the offset m with the length
| of that segment to determine if the address is valid



Logical-to-Physical Address
Translation in segmentation

16-bit logical address

+4 >
4-bit segment # 12-bit offset
4 - >
0/0/0/)110/0]1/0)1/1/11110/0/0/0
A T
Length Base
0 [001011101110/0000010000000000] )4
1 (011110011110/0010000000100000| >+
Process segment table
v
— " —,
0 R L e e T 0
4 »

16-bit physical address



44

Simple segmentation and paging
comparison

Segmentation requires more complicated
hardware for address translation

Segmentation suffers from external fragmentation
Paging only yield a small internal fragmentation

Segmentation is visible to the programmer
whereas paging is transparent

Segmentation can be viewed as commodity
offered to the programmer to organize logically a
program into segments and using different kinds
of protection (ex: execute-only for code but read-
write for data)

# for this we need to use protection bits in segment
table entries



