
1

Memory Management

2

Memory Management

 Is the task carried out by the OS and

hardware to accommodate multiple

processes in main memory

 If only a few processes can be kept in main

memory, then much of the time all

processes will be waiting for I/O and the

CPU will be idle

 Hence, memory needs to be allocated

efficiently in order to pack as many

processes into memory as possible

3

Memory Management

 In most schemes, the kernel occupies

some fixed portion of main memory and

the rest is shared by multiple processes

4

Memory Management Requirements

 Relocation

programmer cannot know where the program

will be placed in memory when it is executed

a process may be (often) relocated in main

memory due to swapping

swapping enables the OS to have a larger pool

of ready-to-execute processes

memory references in code (for both

instructions and data) must be translated to

actual physical memory address

5

Memory Management Requirements

 Protection

processes should not be able to reference

memory locations in another process without

permission

 impossible to check addresses at compile time

in programs since the program could be

relocated

address references must be checked at run

time by hardware

6

Memory Management Requirements

 Sharing

must allow several processes to access a

common portion of main memory without

compromising protection

cooperating processes may need to share

access to the same data structure

better to allow each process to access the same

copy of the program rather than have their own

separate copy

7

Memory Management Requirements

 Logical Organization

users write programs in modules with different

characteristics

 instruction modules are execute-only

data modules are either read-only or read/write

some modules are private others are public

To effectively deal with user programs, the OS

and hardware should support a basic form of

module to provide the required protection and

sharing

8

Memory Management Requirements

 Physical Organization

secondary memory is the long term store for

programs and data while main memory holds

program and data currently in use

moving information between these two levels of

memory is a major concern of memory

management (OS)

 it is highly inefficient to leave this responsibility

to the application programmer

9

Simple Memory Management

 In this chapter we study the simpler case where

there is no virtual memory

 An executing process must be loaded entirely in

main memory (if overlays are not used)

 Although the following simple memory

management techniques are not used in modern

OS, they lay the ground for a proper discussion of

virtual memory (next chapter)

 fixed partitioning

 dynamic partitioning

 simple paging

 simple segmentation

10

Fixed Partitioning

 Partition main memory

into a set of non

overlapping regions

called partitions

 Partitions can be of

equal or unequal sizes

11

Fixed Partitioning

 any process whose size is less than or equal to a

partition size can be loaded into the partition

 if all partitions are occupied, the operating system

can swap a process out of a partition

 a program may be too large to fit in a partition.

The programmer must then design the program

with overlays

when the module needed is not present the user

program must load that module into the program’s

partition, overlaying whatever program or data are

there

12

Fixed Partitioning

 Main memory use is inefficient. Any

program, no matter how small, occupies an

entire partition. This is called internal

fragmentation.

 Unequal-size partitions lessens these

problems but they still remain...

 Equal-size partitions was used in early

IBM’s OS/MFT (Multiprogramming with a

Fixed number of Tasks)

13

Placement Algorithm with Partitions

 Equal-size partitions

 If there is an available partition, a process can

be loaded into that partition

because all partitions are of equal size, it does

not matter which partition is used

 If all partitions are occupied by blocked

processes, choose one process to swap out to

make room for the new process

14

Placement Algorithm with Partitions

 Unequal-size

partitions: use of

multiple queues

 assign each process to

the smallest partition

within which it will fit

 A queue for each

partition size

 tries to minimize

internal fragmentation

 Problem: some queues

will be empty if no

processes within a size

range is present

15

Placement Algorithm with Partitions

 Unequal-size

partitions: use of a

single queue

 When its time to load a

process into main

memory the smallest

available partition that

will hold the process is

selected

 increases the level of

multiprogramming at the

expense of internal

fragmentation

16

Dynamic Partitioning

 Partitions are of variable length and number

 Each process is allocated exactly as much

memory as it requires

 Eventually holes are formed in main

memory. This is called external

fragmentation

 Must use compaction to shift processes so

they are contiguous and all free memory is

in one block

 Used in IBM’s OS/MVT (Multiprogramming

with a Variable number of Tasks)

17

Dynamic Partitioning: an example

 A hole of 64K is left after loading 3 processes: not

enough room for another process

 Eventually each process is blocked. The OS

swaps out process 2 to bring in process 4

18

Dynamic Partitioning: an example

 another hole of 96K is created

 Eventually each process is blocked. The OS

swaps out process 1 to bring in again process 2

and another hole of 96K is created...

 Compaction would produce a single hole of 256K

19

Placement Algorithm

 Used to decide

which free block to

allocate to a process

 Goal: to reduce

usage of compaction

(time consuming)

 Possible algorithms:

 Best-fit: choose

smallest hole

 First-fit: choose first

hole from beginning

 Next-fit: choose first

hole from last

placement

20

Placement Algorithm: comments

 Next-fit often leads to allocation of the

largest block at the end of memory

 First-fit favors allocation near the

beginning: tends to create less

fragmentation then Next-fit

 Best-fit searches for smallest block: the

fragment left behind is small as possible

main memory quickly forms holes too small to

hold any process: compaction generally needs

to be done more often

21

Replacement Algorithm

 When all processes in main memory are

blocked, the OS must choose which

process to replace

A process must be swapped out (to a Blocked-

Suspend state) and be replaced by a new

process or a process from the Ready-Suspend

queue

We will discuss later such algorithms for

memory management schemes using virtual

memory

22

Buddy System

 A reasonable compromize to overcome

disadvantages of both fixed and variable

partitionning schemes

 A modified form is used in Unix SVR4 for

kernal memory allocation

 Memory blocks are available in size of

2^{K} where L <= K <= U and where

2^{L} = smallest size of block allocatable

2^{U} = largest size of block allocatable

(generally, the entire memory available)

23

Buddy System

 We start with the entire block of size 2^{U}

 When a request of size S is made:

 If 2^{U-1} < S <= 2^{U} then allocate the entire

block of size 2^{U}

 Else, split this block into two buddies, each of size

2^{U-1}

 If 2^{U-2} < S <= 2^{U-1} then allocate one of the

2 buddies

Otherwise one of the 2 buddies is split again

 This process is repeated until the smallest block

greater or equal to S is generated

 Two buddies are coalesced whenever both of

them become unallocated

24

Buddy System

 The OS maintains several lists of holes

 the i-list is the list of holes of size 2^{i}

whenever a pair of buddies in the i-list occur,

they are removed from that list and coalesced

into a single hole in the (i+1)-list

 Presented with a request for an allocation

of size k such that 2^{i-1} < k <= 2^{i}:

 the i-list is first examined

 if the i-list is empty, the (i+1)-list is then

examined...

25

Example of Buddy System

26

Buddy Systems: remarks

 On average, internal fragmentation is 25%

each memory block is at least 50% occupied

 Programs are not moved in memory

simplifies memory management

 Mostly efficient when the size M of memory

used by the Buddy System is a power of 2

M = 2^{U} “bytes” where U is an integer

 then the size of each block is a power of 2

 the smallest block is of size 1

Ex: if M = 10, then the smallest block would be

of size 5

27

Relocation

 Because of swapping and compaction, a

process may occupy different main

memory locations during its lifetime

 Hence physical memory references by a

process cannot be fixed

 This problem is solved by distinguishing

between logical address and physical

address

28

Address Types

 A physical address (absolute address) is a

physical location in main memory

 A logical address is a reference to a

memory location independent of the

physical structure/organization of memory

 Compilers produce code in which all

memory references are logical addresses

 A relative address is an example of logical

address in which the address is expressed

as a location relative to some known point

in the program (ex: the beginning)

29

Address Translation

 Relative address is the most frequent type

of logical address used in pgm modules

(ie: executable files)

 Such modules are loaded in main memory

with all memory references in relative form

 Physical addresses are calculated “on the

fly” as the instructions are executed

 For adequate performance, the translation

from relative to physical address must by

done by hardware

30

Simple example of hardware
translation of addresses

 When a process is assigned to the running state, a

base register (in CPU) gets loaded with the

starting physical address of the process

 A bound register gets loaded with the process’s

ending physical address

 When a relative addresses is encountered, it is

added with the content of the base register to

obtain the physical address which is compared

with the content of the bound register

 This provides hardware protection: each process

can only access memory within its process image

31

Example Hardware for Address Translation

32

Simple Paging

 Main memory is partition into equal fixed-

sized chunks (of relatively small size)

 Trick: each process is also divided into

chunks of the same size called pages

 The process pages can thus be assigned

to the available chunks in main memory

called frames (or page frames)

 Consequence: a process does not need to

occupy a contiguous portion of memory

33

Example of process loading

 Now suppose that process B is swapped out

34

Example of process loading (cont.)

 When process A and C

are blocked, the pager

loads a new process D

consisting of 5 pages

 Process D does not

occupied a contiguous

portion of memory

 There is no external

fragmentation

 Internal fragmentation

consist only of the last

page of each process

35

Page Tables

 The OS now needs to maintain (in main memory) a

page table for each process

 Each entry of a page table consist of the frame

number where the corresponding page is

physically located

 The page table is indexed by the page number to

obtain the frame number

 A free frame list, available for pages, is maintained

36

Logical address used in paging

 Within each program, each logical address

must consist of a page number and an

offset within the page

 A CPU register always holds the starting

physical address of the page table of the

currently running process

 Presented with the logical address (page

number, offset) the processor accesses the

page table to obtain the physical address

(frame number, offset)

37

Logical address in paging

 The logical address becomes

a relative address when the

page size is a power of 2

 Ex: if 16 bits addresses are

used and page size = 1K, we

need 10 bits for offset and

have 6 bits available for page

number

 Then the 16 bit address

obtained with the 10 least

significant bit as offset and 6

most significant bit as page

number is a location relative to

the beginning of the process

38

Logical address in paging

 By using a page size of a power of 2, the

pages are invisible to the programmer,

compiler/assembler, and the linker

 Address translation at run-time is then

easy to implement in hardware

 logical address (n,m) gets translated to

physical address (k,m) by indexing the page

table and appending the same offset m to the

frame number k

39

Logical-to-Physical Address
Translation in Paging

40

Simple Segmentation

 Each program is subdivided into blocks of

non-equal size called segments

 When a process gets loaded into main

memory, its different segments can be

located anywhere

 Each segment is fully packed with

instructs/data: no internal fragmentation

 There is external fragmentation; it is

reduced when using small segments

41

Simple Segmentation

 In contrast with paging, segmentation is

visible to the programmer

provided as a convenience to organize logically

programs (ex: data in one segment, code in

another segment)

must be aware of segment size limit

 The OS maintains a segment table for each

process. Each entry contains:

 the starting physical addresses of that

segment.

 the length of that segment (for protection)

42

Logical address used in segmentation

 When a process enters the Running state, a CPU

register gets loaded with the starting address of

the process’s segment table.

 Presented with a logical address (segment

number, offset) = (n,m), the CPU indexes (with n)

the segment table to obtain the starting physical

address k and the length l of that segment

 The physical address is obtained by adding m to k

(in contrast with paging)

 the hardware also compares the offset m with the length

l of that segment to determine if the address is valid

43

Logical-to-Physical Address
Translation in segmentation

44

Simple segmentation and paging
comparison

 Segmentation requires more complicated

hardware for address translation

 Segmentation suffers from external fragmentation

 Paging only yield a small internal fragmentation

 Segmentation is visible to the programmer

whereas paging is transparent

 Segmentation can be viewed as commodity

offered to the programmer to organize logically a

program into segments and using different kinds

of protection (ex: execute-only for code but read-

write for data)

 for this we need to use protection bits in segment

table entries

